Optimizing Ticking for Large Object Counts

How can we optimize ticking for a large number of objects without sacrificing performance?

Optimizing ticking for a large number of objects is crucial for maintaining good performance in complex games. Here are several strategies to achieve this.

Object Pooling

Instead of creating and destroying objects frequently, use an object pool to reuse inactive objects.

#include <queue>
#include <vector>

template <typename T>
class ObjectPool {
public:
  ObjectPool(size_t initialSize) {
    for (size_t i = 0; i < initialSize; ++i) {
      objects.emplace_back(
        std::make_unique<T>());
      available.push(&(*objects.back()));
    }
  }

  T* Get() {
    if (available.empty()) {
      objects.emplace_back(
        std::make_unique<T>());
      available.push(&(*objects.back()));
    }
    T* obj = available.front();
    available.pop();
    return obj;
  }

  void Return(T* obj) { available.push(obj); }

private:
  std::vector<std::unique_ptr<T>> objects;
  std::queue<T*> available;
};

class Bullet : public GameObject {
  // Bullet implementation
};

class BulletManager {
public:
  BulletManager() : pool(1000) {}

  void SpawnBullet() {
    Bullet* bullet = pool.Get();
    activeBullets.push_back(bullet);
  }

  void TickAll() {
    for (
      auto it = activeBullets.begin();
      it != activeBullets.end();
    ) {
      if ((*it)->IsActive()) {
        (*it)->Tick();
        ++it;
      } else {
        pool.Return(*it);
        it = activeBullets.erase(it);
      }
    }
  }

private:
  ObjectPool<Bullet> pool;
  std::vector<Bullet*> activeBullets;
};

Spatial Partitioning

Use spatial partitioning techniques like quadtrees or grid systems to only update objects that are relevant to the current game state.

#include <unordered_map>

class GridCell {
public:
  void AddObject(GameObject* obj) {
    objects.push_back(obj);
  }

  void RemoveObject(GameObject* obj) {
    objects.erase(
      std::remove(objects.begin(),
                  objects.end(), obj),
      objects.end());
  }

  void TickAll() {
    for (auto* obj : objects) { obj->Tick(); }
  }

private:
  std::vector<GameObject*> objects;
};

class SpatialGrid {
public:
  void AddObject(
    GameObject* obj, int x, int y
  ) {
    int cellX = x / cellSize;
    int cellY = y / cellSize;
    grid[{cellX, cellY}].AddObject(obj);
  }

  void TickAll() {
    for (auto& [pos, cell] : grid) {
      cell.TickAll();
    }
  }

private:
  std::unordered_map<
    std::pair<int, int>, GridCell> grid;
  int cellSize{100}; // Size of each grid cell
};

Multithreading

Utilize multiple threads to update objects in parallel.

#include <mutex>
#include <thread>

class World {
public:
  void TickAll() {
    const size_t numThreads =
      std::thread::hardware_concurrency();
    std::vector<std::thread> threads;

    for (size_t i = 0; i < numThreads; ++i) {
      threads.emplace_back(
        [this, i, numThreads](){
          for (size_t j = i; j < objects.size();
               j += numThreads) {
            objects[j]->Tick();
          }
        });
    }

    for (auto& thread : threads) {
      thread.join();
    }
  }

private:
  std::vector<std::unique_ptr<GameObject>>
  objects;
  std::mutex objectsMutex;
};

Data-Oriented Design

Organize data for cache-friendly access patterns.

class ComponentSystem {
public:
  void AddObject(int x, int y, float velocity) {
    positions.emplace_back(x, y);
    velocities.push_back(velocity);
  }

  void TickAll() {
    for (
      size_t i = 0;
      i < positions.size();
      ++i
    ) {
      positions[i].x += velocities[i];
      positions[i].y += velocities[i];
    }
  }

private:
  struct Position {
    int x, y;
  };

  std::vector<Position> positions;
  std::vector<float> velocities;
};

Lazy Evaluation

Only update objects when their state is actually needed.

class LazyGameObject {
public:
  void SetNeedsUpdate() { needsUpdate = true; }

  void Tick() {
    if (needsUpdate) {
      DoUpdate();
      needsUpdate = false;
    }
  }

private:
  bool needsUpdate{false};

  void DoUpdate() {
    // Perform actual update logic
  }
};

Update Frequency Management

Allow different update frequencies for different types of objects.

class GameObject {
public:
  GameObject(int updateFrequency) :
    updateFrequency(updateFrequency) {}

  void Tick(int currentFrame) {
    if (currentFrame % updateFrequency == 0) {
      DoTick();
    }
  }

private:
  int updateFrequency;

  virtual void DoTick() = 0;
};

By implementing these optimization techniques, you can significantly improve the performance of your game when dealing with a large number of objects.

Remember to profile your game to identify bottlenecks and apply these optimizations where they'll have the most impact.

Ticking

Using Tick() functions to update game objects independently of events

Questions & Answers

Answers are generated by AI models and may not have been reviewed. Be mindful when running any code on your device.

The Need for Ticking in Game Development
Why do we need to implement ticking instead of just updating objects when events occur?
Managing Object Ticking Order
How can we ensure that objects are ticked in a specific order to avoid dependency issues?
Managing Different Update Frequencies
What's the best way to handle objects that need to update at different frequencies?
Implementing Multi-threaded Ticking
Is it possible to implement a multi-threaded ticking system for better performance on multi-core processors?
Or Ask your Own Question
Get an immediate answer to your specific question using our AI assistant